

August 11th, 2020 Academic Research Topics in Environmental Measurement and Monitoring

Shardula Gawankar PhD Candidate gawankar@msu.edu

Detection of Saxitoxins from Source and Drinking water using Solid-Phase Extraction and Hydrophilic Interaction Liquid Chromatography – Mass Spectrometry (HILIC – MS)

Shardula Gawankar¹ and Rebecca H. Lahr ¹Department of Civil and Environmental Engineering, Michigan State University

Overall objective

Apply detection method to quantify saxitoxin and its variants in treatment by catalytic ozone membrane filtration

Freshwater cyanobacteria produce saxitoxins that can bind with sodium channels in humans and can lead to paralysis and death in severe cases

<u>Image source</u>: Valério, Elisabete & Chaves, Sandra & Tenreiro, Rogerio. 2010 Toxins. 2. 2359-410. Cusick, Kathleen D., and Gary S. Sayler. 2013 Marine Drugs 11 (4):

991-1018.

The <u>binding of saxitoxins to sodium and</u> <u>calcium channels</u> leads to paralysis and death by respiratory arrest.¹

Also binds to potassium channels but blockage is not complete.¹

Toxicity of saxitoxins originates from the protonated guanidinium groups and gemdiol leading to an oral LD_{50} of $3 - 10 \mu g/kg$

Toxin	R ₁	R ₂	R ₃	R ₄	Relative Toxicity
STX	- H	- H	- H	-OC-NH ₂	1
NEO	- OH	- H	- H	-OC-NH ₂	0.92
GTX1	- OH	- H	- OSO3 ⁻	-OC-NH ₂	0.99
GTX2	- H	- H	- OSO3 ⁻	-OC-NH ₂	0.36
GTX3	- H	- OSO3 ⁻	- H	-OC-NH ₂	0.64
GTX4	- OH	- OSO3 ⁻	- H	-OC-NH ₂	0.73
GTX5	- H	- H	- H	-OC-NH-SO3 ⁻	0.06
GTX6	- OH	- H	- H	-OC-NH-SO3 ⁻	0.06
C1	- H	- H	- OSO3 ⁻	-OC-NH-SO3 ⁻	0.01
C2	- H	- OSO3 ⁻	- H	-OC-NH-SO3 ⁻	0.01

- 1. Oshima, Yasukatsu. 1995. *Journal of AOAC International* 78 (2): 528–32.
- 2. Strichartz, G R. 1984. *Journal of General Physiology* 84 (August 1984): 281–305.

Saxitoxin is detected in USA but is <u>not</u> regulated by US EPA

EPA National Lakes Assessment 2007¹:

- STX in 7.7% samples (out of 1161 lakes & reservoirs)
- Mean conc = $0.061 \mu g/L$
- 82% STX detections occurred in northern half

International drinking water guideline for Saxitoxin = $3 \mu g/L^2$

 Loftin, Keith A, Jennifer L Graham, and Michael T Meyer. 2016 *Harmful Algae* 56: 77–90.
 AWWA. 2016.

Saxitoxin is detected in source and drinking water in Ohio but is <u>not regulated by US EPA</u>

Ohio Drinking Water Treatment Plants¹:

- Source waters detections -0.88 μg/L
- Treated drinking water detections - 0.064 μg/L

States with drinking water guidelines for saxitoxin: Ohio = $0.2 \mu g/L$ Oregon = $1.6 \mu g/L$

Saxitoxins have a double positive charge at a pH < 8.22 and have no charge at a pH > 11.28

HILIC-MS is suitable for sensitive and accurate analysis of saxitoxin and its variants

3. Dell'Aversano, Carmela, Geoffrey K. Eaglesham, and Michael A. Quilliam. 2004. *Journal of Chromatography A* 1028 (1): 155–64.

HILIC Methods have been developed for concentrated solution but not dilute samples like surface water

Neutral HII IC-MS used for Analyte quantification of saxitoxin from Partitioning Chargeo 0 Analyt extracts of 0 O Electrostatic shellfish¹, Repulsion algal extracts², Electrostatic Attraction **Stationary Phase** OH urine³ and Particle water (small volume)⁴ Water enriched layer но OH Image source: http://www.ace-hplc.com/products/product.aspx?id=5115 Polar Neutral 1. M.A. Quilliam, P. Hess, C. Dell'Aversano, Mycotoxins Phycotoxins **H**-bonding Analyte Perspect. Turn Century. (2001) 383-39 2. C. Dell'Aversano, G.K. Eaglesham, M.A. Quilliam, J. Chromatogr. A. 1028 (2004) 155-164

- 3. R.C. Johnson et al. J. Anal. Toxicol. 33 (2009) 8-1
- 4. Jansson, Daniel, and Crister Åstot. 2015. Journal of Chromatography A 1417: 41–48.

Saxitoxins are retained on the HILIC column through partitioning and electrostatic interactions

Step 1: Wetting stationary phase with a polar solvent like water

Step 3: Secondary electrostatic interactions

Image source: https://www.waters.com/waters/en_US/Polar-compound retention-of-broad-analytes/nav.htm?cid=513211&locale=en_US

HILIC – MS Experimental Details

Liquid Chromatography

<u>Column</u>: Acquity UPLC BEH Amide (pore size 130 Å and particle size $1.7 \ \mu m$)

Mass Spectrometry

Instrument: Waters Xevo G2-XS UPLC/MS/MS (Quadrupole/Time-of-Flight)

LC COLUMN GRADIENT

We achieved a HILIC – MS detection limit of 0.125 μ M for saxitoxin without SPE

Detection Limit = $0.125 \,\mu M$

Within 7 replicates: Minimum Reporting Limit = $0.25 \ \mu M$

Our detection limit is expected to achieve 0.1 *nM* saxitoxin detections with SPE, which is well below the surface water detection needs

Solid Phase Extraction (SPE) will be employed to concentrate saxitoxins from 500 mL of water

Weak cation exchange (WCX)

Extraction of saxitoxin from human urine $(0.5 - 1 mL)^1$ and plasma $(3 mL)^2$ <u>Not tested for extraction</u>

from large volume of water

- 1. R.C. Johnson, et al, 2009. J. Anal. Toxicol. 33 8-14
- 2. Peake, Roy W.A., et al. 2016. *Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences* 1036–1037: 42–49.

Graphitized carbon extraction

Extraction of highly basic polar compounds: anatoxin and cylindrospermopsin¹ Clean up of saxitoxin containing extracts from mussels² Extraction of saxitoxin from 1 *mL* water samples³

- 1. Zervou, Sevasti Kiriaki, et al. 2017. *Journal of Hazardous Materials* 323: 56–66.
- 2. Rey, Veronica, et al. 2018. Food Chemistry 269 (June): 166–72.
- 3. Jansson, Daniel, and Crister Åstot. 2015. *Journal of Chromatography* A 1417: 41–48.

Strong cation exchange (SCX)

Extraction of gonayutoxins¹ and C-toxins² from small volumes of urine and water

- 1. Eangoor, Padmanabhan, Amruta Indapurkar, and Jennifer S Knaack. 2015. 2–5.
- 2. Jansson, Daniel, and Crister Åstot. 2015. *Journal of Chromatography* A 1417: 41–48.

Hydrophilic Lipophilic Balance (HLB)

Commonly used for extraction of Microcystins from surface water¹ Used for clean-up of extracts containing saxitoxins²

- 1. J.A. Shoemaker, D.R Tettnhorst, and A. de la Cruz. 2015. *United States Environmental Protection Agency*.
- Quilliam, Michael A., Phillip Hess, and Carmela Dell'Aversano.
 2001 Mycotoxins and Phycotoxins in Perspective at the Turn of the MICHIGAN STATE UNIVERSITY Century, 383–91.

Weak cation exchange has been most frequently used in the past for extraction for saxitoxins from concentrated solutions¹⁻⁵

Positively charged guanidinium groups of saxitoxin interact with negatively charged sorbent of the resin

- 1. R.C. Johnson, et al, 2009. *J. Anal. Toxicol.* 33 8–14
- 2. Peake, Roy W.A., et al. 2016. *Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences* 1036–1037: 42–49.
- Stafford, Robert G., and Harry B. Hines. 1994. Journal of Chromatography B: Biomedical Sciences and Applications 657 (1): 119–24.
- 4. Eangoor, Padmanabhan, et al. 2015. 2–5.
- 5. Bragg, William A, et al. 2015. Toxicon 99: 118-24.

WCX SPE procedure modified from Johnson et al 2009 that extracted STX from a concentrated solution of 1 mL

GS6

GS6 Can talk about this first and then relate it to the other cartridges in the next slide Gawankar, Shardula, 7/13/2020

Step	WCX	SCX	HLB	Graphite carbon		
Procedure derived from	Jonson et al 2009	Recommended procedure by Biotage	EPA Method 544	Zervou et al 2017		
Condition	15 mL MeOH	15 <i>mL</i> MeOH	15 <i>mL</i> MeOH	6 <i>mL</i> DCM 6 <i>mL</i> MeOH		
Equilibration	15 <i>mL</i> water (pH = 6.5)	15 <i>mL</i> water (pH = 7)	15 mL water	6 <i>mL</i> water + 2 <i>M</i> NaOH (pH > 11.22)		
Load 500 <i>mL</i> water + 0.1 <i>nM</i> Saxitoxin @ < 5 <i>mL/min</i> (pH 6.5 – 7) pH > 11.22						
Wash	6 <i>mL</i> water 6 <i>mL</i> MeOH	6 <i>mL</i> water 6 <i>mL</i> MeOH	6 <i>mL</i> water	6 mL MeOH		
Elute	10 <i>mL</i> 95% MeOH + 5% FA	10 mL 5% NH ₄ OH in 50:50 DCM:MeOH	10 <i>mL</i> 95% MeOH + 5% FA	10 <i>mL</i> 40:60 DCM:MeOH + 0.5% FA		
Dry all extracts completely with SpeedVac						
Reconstitute dried extracts with 100 μ L of 95% acetonitrile + 5% water with 10 mM ammonium formate and 4 mM FA						
			MeOH – Methano	I NaOH – Sodium hydroxide		

DCM – Dichloromethane FA – F

Saxitoxins will be extracted by SPE using 4 different cartridges and reconstituted into solvent to achieve a concentration factor of 5000

Starting conc. of saxitoxin = 0.1 *nM* (0.03 $\mu g/L$); Expected conc. in 100 μL = 0.5 μM (150 $\mu g/L$) with 100% recovery

Less than 40% saxitoxin was recovered from WCX, all within the first 6 *mL* of elution

Low recoveries obtained from WCX and HLB cartridges

Cartridge	Recovery
<u>WCX</u> Strata™-X-CW 33 µm Polymeric Weak Cation Exchange	Using 5% formic acid in methanol elution solvent = $\leq 40\%$ Using 5% ammonium hydroxide in methanol = no recovery
<u>WCX</u> Enviro-Clean – Carboxylic Acid – PTFE Frits 500mg 6mL	Using 5% formic acid in methanol elution solvent = 10%
$\underline{\text{HLB}}$ Oasis HLB 6cc 500 mg sorbent 30 μm	< Detection limit toxin in load effluent 10% concentration present in wash effluent < 10% toxin in elution

Future steps

- Perform SPE of saxitoxin using SCX and graphite carbon cartridges
- Optimization:
 - Matrix addition to find the loss of saxitoxin at various steps (i.e. drying, adsorption to sample preparation surfaces, inadequate reconstitution)
 - Use stronger solvents like dichloromethane
- Apply developed method to quantify saxitoxins in treatment by catalytic ozone membrane filtration

Acknowledgements

Committee

Thomas C.

Voice

Rebecca H. Lahr

Hui Li

Susan J. Masten

Anthony Schilmiller

Laboratory Support

Xiaoyan Li

Department of Civil and

Yanlyang Pan

College of Engineering MICHIGAN STATE UNIVERSITY **Environmental Engineering**

Thank you!

Questions?